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Abstract

Quality of service (QoS) mechanisms allowing users to request for

turn-around time guarantees for their jobs have recently generated

much interest. In our previous work we had designed a framework,

QoPS, to allow for such QoS. This framework provides an admission

control mechanism that only accepts jobs whose requested deadlines

can be met and, once accepted, guarantees these deadlines. How-

ever, the framework is completely blind to the revenue these jobs can

fetch for the supercomputer center. By accepting a job, the super-

computer center might relinquish its capability to accept some future

arriving (and potentially more expensive) jobs. In other words, while

each job pays an explicit price to the system for running it, the system

may also be viewed as paying an implicit opportunity cost by accept-

ing the job. Thus, accepting a job is profitable only when the job’s

price is higher than its opportunity cost. In this paper we analyze the

impact such opportunity cost can have on the overall revenue of the

supercomputer center and attempt to minimize it through predictive

techniques. Specifically, we propose two extensions to QoPS, Value-

aware QoPS (VQoPS) and Dynamic Value-aware QoPS (DVQoPS),

to provide such capabilities. We present detailed analysis of these

schemes and demonstrate using simulation that they not only achieve

several factors improvement in system revenue, but also good service

differentiation as a much desired side-effect.

1 Introduction

Batch job schedulers are commonly used to schedule paral-

lel jobs at shared-resource supercomputer centers. The typical

model for these supercomputer centers is to allocate resources

(processors, memory) to a job on submission, if available. If

the requested resources are not currently available, the job is

queued and scheduled to be started at a later time (when the

resources become available). The turnaround time or response

time of a job is the sum of the time for which it has to wait in

the job queue (for resources to be available) and the actual run-

time after the job starts running. Users are typically charged as

a function of the total resources used (resources × runtime).

Together with the standard working model described above,

there has also been a lot of recent interest [8, 13] in Qual-

ity of Service (QoS) in job scheduling in terms of guarantees

in the job’s turn-around time. Such QoS capability is useful

in several instances. For example, a scientist can submit a
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job before leaving work in the evening and request a dead-

line in the job’s turn-around time for 8:00am the next morn-

ing, i.e., she needs the job to complete and the results to be

ready by the time she is back the next morning. Currently,

the only mechanism supercomputer centers provide to achieve

this is based on advance reservations, whereby at job submis-

sion time, the user can request the needed resources during a

specific time window (within the desired deadline). If the re-

quested resources are available in this time window, the job is

accepted and is statically assigned to be executed in that time

window. If the resources are not available in this time window,

the job is rejected and the user can try a different time window

within the deadline period. However, using advance reser-

vation to achieve QoS results in significant under-utilization

of resources. In our previous work [5], we proposed a new

scheme, QoPS, to provide QoS guarantees without statically

assigning a time window to execute the job, i.e., QoPS allows

jobs to be moved in the schedule while being bound by the

requested deadline constraint, thus resulting in significant im-

provements in resource efficiency and the number of accepted

jobs.

QoPS attempts to accept as many jobs as possible and does

not analyze the costs of the jobs that are being submitted. Let

us consider a situation where there are a set of jobs that are

already running in the system and there are four idle proces-

sors available. Suppose a 4-processor job J4 arrives, requests

for a deadline in 4 hours and offers to pay $100. In this situ-

ation, QoPS checks that it can accommodate this job into the

system and accepts it. Immediately after this job is accepted,

another 4-processor job J5 arrives, requests the same deadline

(4 hours) and offers to pay $200 (a higher price than J4). Since

J4 has already been accepted, the system cannot accept J5 and

hence forgo the more profitable job. This demonstrates that it

may not always be beneficial to admit all revenue generating

jobs, because of consequent potential future loss of revenue,

i.e., opportunity cost. In other words, while each job pays a

explicit price to the system for running it, the system may also

be viewed as paying an implicit opportunity cost by accepting

the job. Accordingly, accepting the job is profitable only when

the job’s price is higher than its opportunity cost.

Formally, the opportunity cost of a job is defined as the dif-

ference between the highest revenue possible for the entire

workload, with and without accepting the job. If the oppor-

tunity cost of a job is known up front, the system can easily

derive the potential benefits in accepting the job. However,
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knowing the opportunity cost of a job up front is impossible.

Thus, this paper analyzes the impact such opportunity cost can

have on the overall revenue of the supercomputer center and

attempts to minimize it through predictive techniques. Specif-

ically, we first present an extension of QoPS, named Value-

aware QoPS (VQoPS), that analyzes job prices with various

statically assumed opportunity cost values for the jobs. As we

will demonstrate in the later sections, no single statically as-

sumed opportunity cost value does well for all kinds of job

mixes.

In the second part of the paper, we introduce Dynamic

Value-aware QoPS (DVQoPS) – a self learning variant of

VQoPS to analyze past jobs and predict opportunity costs for

future jobs. However, if the opportunity cost is decided based

on a very long history, the mechanism will lose sensitivity to

small pattern changes in the jobs. Similarly, if the opportunity

cost is decided based on a very short history, the sample set

of previous jobs might be too small and the results obtained

might be noisy and unstable. To add to the complexity, the

optimal history length to be considered might be different for

different days (e.g., there are more jobs when there is a paper

deadline, and hence short histories might be sufficient) or for

different parts of the day (e.g., there are more jobs in the day

time as compared to nights or weekends). Thus, the length of

the history needs to be dynamically adapted to balance sen-

sitivity (not too long a history) and stability (not too short a

history).

It is to be noted that analyzing the opportunity costs of dif-

ferent jobs and trying to maximize revenue also has a much de-

sired side-effect of service differentiation, i.e., if an expensive

job arrives slightly after a cheaper job arrives, a good scheme

can provide service differentiation between the two jobs and

give a higher acceptance chance to the more expensive job.

We present detailed analysis of VQoPS and DVQoPS with

simulation based on real job workloads from the San Diego

Supercomputer Center. Our results provide various insights

into the impact of opportunity costs in QoS-aware job sched-

ulers and demonstrate that DVQoPS can provide significantly

higher system revenue as well as better service differentiation

between high-paying urgent and low-paying non-urgent jobs

as compared to QoPS.

2 Related Work

There has been some prior work in providing differentiated

service in job scheduling, where different classes of jobs get

different statically or dynamically calculated priorities [1, 10].

These approaches provide best effort prioritization for jobs or

classes of jobs. While such best effort prioritization is use-

ful, it is of considerable interest to users to receive hard QoS

guarantees. In this context, it has been shown that dynamic

systems with more than one processor, a polynomial-time op-

timal scheduling algorithm for real-time deadlines does not

exist [7, 6]. In our previous work, QoPS [5], we developed

a heuristic based approach to provide hard deadline guaran-

tees to end users in terms of turnaround time. Buyya et.

al. [8, 12, 13] have addressed a similar scheme for time shared

systems (multiple jobs are scheduled and time sliced on a sin-

gle node).

There has also been previous work that examines market

based approaches, where users might have different goals and

preferences that are used to express their desire for service

in a common way (e.g., currency) [11, 11, 9]. These follow

an auction-based resource allocation mechanism to choose the

winner from the bids of different users. Two recent publi-

cations [2, 4] have addressed this concept for supercomputer

job scheduling. Both papers rely on a per-job specific utility

or value function that provides an explicit mapping of service

quality to value using a piece-wise linear function that decays

with time. The magnitude of the function reflects the job value

and a rate of decay reflects the urgency or sensitivity to delay.

Our current work extends previously proposed hard QoS-

based scheduling mechanisms by incorporating a market-

based approach for revenue, and analyzes this model to un-

derstand the impact of opportunity cost.

3 Evaluation Approach

The strategies in this paper are simulated using real work-

loads (10,000 job subset of the SDSC SP-2 workload) [3] that

includes information such as job runtime, number of nodes re-

quested, submission time, and user estimated runtime limit.

Deadline Information: None of the workloads available

contains any job deadline information, as hard deadline guar-

antees are not supported by any supercomputer center. Hence,

we synthetically generate them by assuming that users will

assign deadlines based on job runtimes, i.e., a job’s dead-

line is assigned to be 5 times the user estimated runtime

(deadlinej = 5 ∗ user runtime estimatej).

Runtime Estimates: We performed two sets of simulations.

The first set takes an ideal view of the workload and assumes

that users are able to perfectly estimate their job’s runtime; this

removes the impact of estimation noise in the workload. The

second set uses the actual runtime estimates given in the work-

load allowing evaluation using more realistic environments.

Job Submission Load: In supercomputer centers, the ar-

rival rate of job requests varies with time (in a day, between

days, between weeks). To capture this, we carry out simula-

tions with two different offered loads for each workload: (i) the

original load as measured in the workload and (ii) a high load

emulation achieved by randomly duplicating roughly 40% of

the jobs. Duplicated jobs retain the submission time, runtime

estimate, runtime, and deadline.

Urgency and Job Cost: Like deadline information, none

of the workloads available contains information about job ur-

gency or the amount the user is willing to pay for it. Hence, we

randomly mark a fraction (U) of the jobs as urgent. The cost

of non-urgent jobs is fixed at 0.1 units per processor-second

of the job and that of the urgent jobs’ is set to be higher than

that of non-urgent jobs by a factor (C). In our experiments,

we used values of 20%, 50% and 80% for U and 10, 5 and 2

for C. We assume that each job specifies a maximum cost the
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user is willing to pay for the job, and a linearly decaying cost

function. The value of the job becomes zero at the requested

deadline of the job. This model is similar to that used in previ-

ous papers [2, 4], except for deadline guarantees, which were

not previously considered.

4 Opportunity Cost in Job Scheduling

As described earlier, each accepted job can force the system

to reject future arriving more expensive jobs, i.e., with each

accepted job the system pays an opportunity cost. Opportunity

cost of a job depends both on the characteristics of the job as

well as the workload, as we will describe in section 4.1. In

section 4.2, we present a new design that utilizes job charac-

teristics to minimize the impact of opportunity cost and extend

this design in section 4.3 to monitor workload characteristics

and predict the characteristics of future jobs, thus allowing for

improved performance.

4.1 Job/Workload Characteristics

Opportunity cost of a job depends on two broad aspects: job

characteristics and workload characteristics.

Job Characteristics: Two primary characteristics of a job im-

pact its opportunity cost – job shape and job urgency. Job

shape determines how many later jobs must be dropped. Large

jobs (processor-seconds) typically cause more later arriving

jobs to be dropped; thus, their opportunity cost will likely be

high. Job urgency determines how stringent the schedule is,

and how easier it is to accommodate other jobs. Thus, the op-

portunity cost of stringent jobs is likely high.

Workload Characteristics: Three primary workload charac-

teristics impact a job’s opportunity cost – offered load, job mix

and job pricing. When there are few jobs in the system (i.e.,

low offered load), acceptance of a non-urgent job is less likely

to prevent admittance of future urgent jobs. Thus, the oppor-

tunity cost would typically be low. Similarly, if all jobs had

the same urgency and pricing, opportunity cost of every job

will be zero, since it is not possible for a later job to have bet-

ter pricing. But when there are some urgent (and high-paying)

and some non-urgent (and low-paying) jobs in the system, op-

portunity cost is no longer zero; opportunity cost of admitting

a non-urgent job increases with the percentage of urgent high-

paying jobs since there is a high probability that its admittance

could prevent admission of a future high-paying job. Finally,

the higher the relative premium paid by urgent jobs compared

to non-urgent jobs, the greater the cost of losing an urgent job,

and greater the opportunity cost of non-urgent jobs.

4.2 Value­aware QoPS (VQoPS)

The QoPS algorithm does not perform any differentiation

between jobs based on their price. However, in an environment

that allows users to offer price based on responsiveness, some

jobs will offer more revenue than others. Similarly, some jobs

will have tighter deadlines than others. For an algorithm that

is expected to improve the overall revenue of the system, the

following two properties are desirable:

1. During backfilling, it should reorder the job queue so as

to give a higher priority for more urgent jobs and attempt

to reduce their turnaround time, thus increasing revenue.

2. It should maximize overall system revenue during job ac-

ceptance by considering both the explicit revenue benefit

and the implicit loss of opportunity for the system.

False

True

False

True

False

nJob Input(J ) OC−Factor

True

Accept Job (Jn)

BestSchedule = Ø

Reject Job (Jn)

RevenueGain >

ListPos = ListPos + 1

QoPS(Jn)

OC−Factor* Processor(Jn) * RunTime(Jn)

DeadlineFeasibleScheduleList.size()

BestRevenue = Revenue(BestSchedule)
DeadlineFeasibleScheduleList(ListPos)
BestSchedule = 

RevenueGain = BestRevenue − CurrentRevenue

BestRevenue < Revenue(

DeadlineFeasibleSchedule(ListPos))

ListPos <

DeadlineFeasibleScheduleList =

ListPos = 0

CurrentRevenue = Revenue(CurrentSchedule)

BestRevenue = − œ

Figure 1: VQoPS Algorithm Flow Chart

4.2.1 Design of VQoPS Value-aware QoPS (VQoPS) uti-

lizes some of the characteristics of the job (job shape), to

identify its opportunity cost. It uses a static system param-

eter (OC-Factor), assumes the opportunity cost of the job to

be OC-Factor × job size and analyzes the impact of different

OC-Factors on system revenue. Figure 1 shows the high-level

VQoPS flowchart. VQoPS utilizes QoPS as a pluggable mod-

ule to verify when a new job can be accepted. Since QoPS

just provides a recommendation on whether a job should be

accepted or rejected, we adapted it to instead provide the list

of all the acceptable schedules that it finds. VQoPS weighs

the statically assumed opportunity cost of the new job with its

price and decides whether the job should be accepted. In par-

ticular, if the revenue gain obtainable can offset the opportunity

cost, VQoPS accepts the job. It is worthy to note that the OC-

Factor input in VQoPS is constant (static) throughout the job

processing and is expected to be defined by an administrator

as a system parameter. The time complexity of our approach

for N jobs is θ(K.N2.log(N)), where K specifies maximum

number of violations allowed in QoPS.
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Table 1: Revenue improvement for varying OC-Factors

Relative %

Urgent Urgent Offered OC-Factor

Cost Jobs Load 0.00 0.05 0.10 0.40

10X 80% Orig 21% 26% 37% 39%
5X 80% Orig 20% 25% 34% 30%
2X 80% Orig 19% 26% 27% -100%

10X 80% Orig 21% 26% 37% 39%
10X 50% Orig 23% 34% 46% 45%
10X 20% Orig 26% 38% 22% 22%

10X 80% Orig 21% 26% 37% 39%
10X 80% High 63% 90% 135% 160%

4.2.2 Impact of Workload Characteristics on VQoPS

Table 1 shows the revenue improvements generated by VQoPS

(compared to QoPS) for different workload characteristics and

different OC-Factors (0.0, 0.05, 0.1, and 0.4). Several insights

can be drawn from these results. Primarily, though VQoPS

outperforms QoPS by up to 160% in some cases, the improve-

ment is highly dependent on the workload characteristics. That

is, no single OC-Factor can consistently provide a good perfor-

mance for all workloads.

From table 1, as the relative cost of the urgent jobs de-

creases, we see the smaller OC-Factor values perform better.

This is expected, since the opportunity cost of turning away

a future urgent job decreases as the cost of the urgent job de-

creases. Accordingly, the OC-Factor providing the best perfor-

mance decreases as well. Also, as the number of urgent jobs

decreases, smaller OC-Factor values perform better. This is

again expected since as the number of urgent jobs decreases,

though the worst case opportunity cost for QoPS would not

reduce, the average case opportunity cost would reduce, and

accordingly the OC-Factor. Finally, with load increase we see

that the revenue improvement increases for all OC-Factor val-

ues. As the fraction of dropped jobs increases with increasing

load (since the system cannot accommodate all the jobs), the

algorithm gets very selective and picks only the high-paying

jobs. QoPS, on the other hand, picks all the jobs that it can

meet the deadlines for, without considering their prices. This,

accordingly, reflects as higher revenue improvement for all

OC-Factor values at high loads.

4.3 DVQoPS: Self­learning VQoPS

Revenue improvement achieved by VQoPS heavily depends

on the workload characteristics. Thus, it is desirable to de-

velop a more sophisticated algorithm that has all the benefits

of VQoPS, and can adapt the OC-Factor based on workload

characteristics. In this section, we describe a variant of VQoPS

which aims to achieve this.

4.3.1 Dynamic Value-aware QoPS (DVQoPS) In

VQoPS, to properly tune the OC-Factor, various dynamically

changing variables must be considered. In lightly loaded

situations more normal jobs should be accepted, and a lower

OC-Factor should be used. As the load increases, the OC-

Factor should be increased. If the expected price difference

between urgent and non-urgent jobs is small, the scheduler

should be more aggressive and accept more cheaper jobs.

As the expected revenue difference increases, the OC-Factor

should be increased to be more selective in jobs accepted.

Finally, as the percent of urgent or expensive jobs increases,

the OC-Factor should also increase. When there are only a

few urgent jobs, it is not desirable to reject a large number

of normal jobs waiting for an urgent job to arrive. However,

as it becomes more likely an urgent job will arrive soon, the

OC-Factor should increase. It is very difficult to manually

take these considerations and their interactions into account,

especially as they change over time. Thus, it is desirable

for the scheduler to automatically generate and adjust the

OC-Factor.

In our approach we perform a number of what-if simulations

over a limited backward window in time, called the rollback

window. The idea is to periodically adjust the OC-Factor by

looking backwards and performing simulations to estimate the

revenue that would have been realized for various choices of

OC-Factors. Such simulation is feasible since the history of ar-

rived jobs (accepted and rejected jobs) is available at any time.

For each choice of OC-Factor, we utilize the revenue of each

job accepted by the simulated schedule, and thereby estimate

the total revenue. The OC-Factor giving the best overall rev-

enue over the window is chosen to be used for the immediate

future (until the next OC-Factor change event).

The basic premise of the adaptive OC-Factor selection pro-

cedure is that the best OC-Factor depends on time-varying

workload characteristics. If DVQoPS is to be effective in

adapting to such variations, clearly the rollback window must

not be too large, e.g., one month, because the time variance in

load will get averaged out over the long rollback window. At

the other extreme, if the rollback window is very small, the re-

sults of the what-if simulations may be extremely sensitive and

not robust. In the next subsection we discuss this issue further.

4.3.2 Balancing Sensitivity and Stability in DVQoPS

The choice of rollback window involves a judicious balance

between sensitivity and stability. The rollback window should

be short enough to be sensitive to changes in workload charac-

teristics (e.g., load and job mix). Similarly, the rollback win-

dow should not be so short that specific jobs affect the best

what-if OC-Factor, and rather be stable with respect to identi-

fying aggregate characteristics of the jobs in the window.

For assessing the effect of the rollback window on trace

variation, the average offered load is computed over segments

of duration equal to the rollback window, and the variance of

these averages computed. At one extreme, if the rollback win-

dow size is the entire trace duration, the variance is zero since

a single average load is computed. At the other extreme, when

the rollback window is minimized, the variance of the average

loads is maximized. As the rollback window size increases,

the load variance is expected to decrease.

To understand the impact of rollback window on stability of

OC-Factor choice, consider the following example. Suppose
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Table 2: Impact of rollback window size

Rollback Avg. OC-Factor

Window Variance Load Revenue

Size (∗10−5) Variance

1 3.15 10.60 473631718
4 6.18 2.89 508341077

16 7.84 0.62 555062813
32 2.99 0.34 692266945
48 1.36 0.24 715606095
64 1.03 0.17 715733110
128 1.13 0.04 701476009

a set of N consecutively arriving jobs were considered for the

what-if simulations in a rollback window, and the best OC-

Factor choice determined. Let us then slightly change the front

end of the window to exclude the latest of these N jobs, but

move back the rear end of the rollback window to include the

last arriving job outside the currently chosen window. If the

best choice of OC-Factor for the two rollback windows is very

different, it implies that the choice procedure is very unstable.

Table 2 shows the impact of rollback window choice on

the variance of OC-Factor choice for adjacent window groups,

variance of the average offered load and overall revenue. By

varying the length of the rollback window from 1 to 128 hours,

the revenue varies from 414M units to 716M units. That is,

rollback window size has a large impact on the overall revenue.

The second column of the table shows the average of the vari-

ance of each set of 5 consecutive OC-Factor choices. With a

small rollback window, a small change in the considered jobs

will result in a very different OC-Factor. This reflects as a

higher average variance for the OC-Factor. The third column

shows the variance of the average offered load over the win-

dow size. As the variance in average offered load decreases,

important variations in the load are being missed and the his-

torical simulation will not be able to see the variations. The

rollback window size needs to be large enough to have a low

average OC-Factor variance (so the historical OC-Factor has

meaning), but small enough to capture significant workload

differences. Therefore, each scenario may require a different

rollback window size that may vary over time.

Thus, a max rollback window is used to dynamically vary

the rollback window size. Every max rollback window hours

the scheduler runs historical simulations (using rollback win-

dow sizes of 1 hour, 2 hours, 4 hours, 8 hours, 16 hours, 32

hours, 64 hours) to determine what rollback window would

have yielded the best revenue over the last max rollback win-

dow hours and uses it for the next max rollback window hours.

DVQoPS (Figure 2(a)) asynchronously evaluates the roll-

back interval and OC-Factor after every fixed interval. Fig-

ure 2(b) demonstrates the basic steps used to determine the

best rollback interval. This is used in Figure 2(c) when eval-

uating the best OC-Factor. For each candidate rollback in-

terval, DVQoPS runs the simulation starting candidate roll-

back interval hours in the past. The rollback interval is set

to the candidate rollback interval that would have produced

the best revenue. This best rollback interval is used for the

next max rollback window hours. The OC-Factor is set by

running what-if simulations for different values of candidate

OC-Factors. The current OC-Factor is set to the candidate

OC-Factor that yields the maximum revenue. DVQoPS uses

the new OC-Factor for the next rollback window hours.

Since DVQoPS dynamically determines the best choices

from a set of T OC-Factors and R rollback windows, its time

complexity would increase to θ(T.R.K.N2.log(N)). While

the time complexity of the scheme seems to be high, in prac-

tice during our experiments, the scheduling event took an aver-

age of 0.9 seconds for each job. Given that job arrival times are

typically in the order of several minutes in most supercomputer

centers, this is not a concern.

5 Experimental Results

There are three workload characteristics that affect opportu-

nity cost: (i) urgent job mix, (ii) cost of urgent jobs and (iii)

system load. In this section, we vary these characteristics to

analyze the behavior of the different schemes.

Simulator Overview: Job scheduling research historically in-

volves running an event based simulator on a synthetic or a

historic workload. These workloads contain the runtime, num-

ber of nodes, queue or arrival time, and user expected runtime

for a set of jobs. Simulations are used to design and test emerg-

ing scheduling algorithms before deployment in production

systems. Simulations provide an environment where varying

scheduling algorithms can be compared in reproducible sce-

narios, providing comparable results. In addition, months of

data can be simulated in seconds or minutes, in comparison to

the months or years it would require to run multiple algorithms

in a live environment.

DVQoPS and VQoPS are evaluated using an event-based

simulator. The simulator takes data in the standard workload

format version 2.0 [3], simulates the scheduling model and cre-

ates an output trace containing data necessary to gather metrics

and perform post processing.

5.1 Impact of Urgent Job Mix

Figure 3(a) illustrates the percentage revenue improvement

(compared to QoPS) for VQoPS (with different static OC-

Factors) and DVQoPS. VQoPS achieves about 20%-45% im-

provement, with different OC-Factors performing the best for

different workload characteristics (i.e., percentage of urgent

jobs) – there is no consistently superior OC-Factor value.

DVQoPS, on the other hand, consistently achieves within 5%

of the best VQoPS implementation for all workloads.

Figure 3(b) shows the service differentiation capability of

the different schemes. As shown in the figure, QoPS ac-

cepts the highest overall percentage of the workload. How-

ever, it does not differentiate between urgent and normal jobs,

and thus cannot maximize revenue. As OC-Factor increases,

VQoPS rejects more normal jobs that would have been ac-

cepted by QoPS in order to accept urgent jobs, thus reducing

the overall acceptance. DVQoPS, on the other hand, accepts

more urgent jobs when the opportunity cost is high and more
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Figure 2: DVQoPS Algorithm Flow Chart
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Figure 3: Revenue improvement and Accepted load. Cost of urgent jobs is 10X of normal jobs. In (b), 50% urgent jobs are used.

normal jobs when it is low. Thus, it dynamically adapt itself

based on the workload characteristics.

5.2 Cost of Urgent Jobs and System Load

Figure 4(a) illustrates the performance of the different

schemes as we vary the cost of the urgent jobs. When the cost

of the urgent jobs is very low, high static OC-Factors actually

perform worse as compared to QoPS. This is expected, since

high static OC-Factors aim to be picky about jobs by anticipat-

ing that picking cheap jobs might result in a high opportunity

cost and hence a loss of revenue. However, when the urgent

jobs are not very expensive, the potential opportunity cost is

low; thus not accepting the cheaper jobs would hurt revenue

as shown. Again, DVQoPS shows a consistent performance

with less than 5% difference as compared to the best static OC-

Factor.
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Figure 4: Revenue improvement for original and high offered load for SDSC trace.

Figure 4(b) illustrates a similar trend, but for a high-load

scenario. In this case, we observe that the revenue improve-

ments are higher compared to the original load scenario. This

is because, though the job mix is the same as the original load

case, the absolute number of urgent jobs is higher in this case.

Since all the schemes shown tend to pick the urgent jobs and

drop the non-urgent jobs, this allows them to improve their rev-

enue further. The overall trend, however, is still the same, with

high static OC-Factors performing worse than QoPS when the

cost of urgent jobs is not too high. This shows that our schemes

can earn further benefit from extra offered load.

5.3 User Runtime Estimate Inaccuracy

Figure 5(a) shows the performance of the schemes for dif-

ferent urgent job mixes when the original inaccurate user es-

timates of jobs are used. Compared to a scenario with exact

user estimates, we notice that the overall revenues are lower

in all cases (especially when the percentage of urgent jobs is

low). The main reason for this is the functional difference be-

tween a service differentiation scheme and a scheme that main-

tains deadline guarantees. Specifically, a scheme that main-

tains deadline guarantees has to be conservative with respect

to its estimates about a job’s runtime. For example, if a one-

minute job estimates its runtime as one-hour, the scheme has

to assume that its going to run for the entire one-hour and find

a feasible schedule before accepting the job. Because of this

conservative nature of deadline guarantee schemes, the number

of accepted jobs is much lesser than what the system could po-

tentially accept. Further, for all the accepted jobs, if most jobs

terminate early and thus pay the maximum amount they had

promised, there is no real differentiation that can be achieved

for these jobs. Only for the jobs that are accepted and have

to wait in the queue, can we provide efficient mechanisms to

improve the overall revenue of the system. Since these kind

of jobs are lesser with inaccurate estimates, we see that the

overall revenue is lesser as well. In general, with inexact user

estimates, it may appear that little profit can be made, but due

to jobs completing early, more profit can actually be made by

running jobs earlier and the effect of the opportunity cost is re-

duced. Therefore, it is often better to be more lax with the OC-

Factor and accept jobs that appear to only modestly increase

revenue.

Also, for low percent of urgent jobs, high OC-Factor val-

ues actually perform worse than QoPS. The reason for this is,

when the static OC-Factor is high, VQoPS rejects all the nor-

mal jobs; since the number of urgent jobs is very low, the sys-

tem is left under-utilized as compared to schemes with lower

static OC-Factor values. This reflects in a lower revenue than

even basic QoPS in some cases.

Figure 5(b) shows the service differentiation capabilities of

the different schemes. The trends for the inexact case are pretty

similar to that of the exact case. This is expected since the

inaccuracy in estimation only affects the overall revenue of the

system, but not the kind of jobs each scheme can accept.

Figures 6(a) and 6(b) illustrate the revenue improvement of

the different schemes while varying the cost of urgent jobs for

original as well as the high offered load. The overall drop in

revenue improvement is especially noticeable when the cost of

urgent jobs is low. Since there are not many jobs to achieve a

revenue improvement from in the inaccurate estimate case, if

the urgent job cost is low, the overall revenue would get hurt

as well. For a higher load, though the improvement is better,

compared to exact estimates, there is a drastic degradation.

Overall, inaccuracy in user estimates has a significant im-

pact on the revenue improvements VQoPS and DVQoPS can

achieve. The service differentiation aspect is not affected, as

expected. Thus, to handle this issue, for a deadline guarantee

scheme, we expect the supercomputer centers to provide a dual

charging model, i.e., resource usage cost and deadline guaran-

tee cost. Resource usage cost could be the same as what we

currently have (resources × runtime). For the deadline guar-

antee cost, since requesting for a deadline guarantee means

that potential later jobs could be rejected, we expect supercom-

puter centers to charge the user based on the estimated runtime

rather than the actual runtime. This could potentially require

users to improve their runtime estimates and in turn improve

the revenue gains VQoPS and DVQoPS can achieve.
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Figure 5: Revenue improvement and Accepted load for inexact estimates. Urgent jobs cost 10X of normal jobs. In (b), 50% urgent jobs are used.
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Figure 6: Revenue improvement with inexact estimates for actual and high offered load for SDSC trace.

6 Conclusions

In this paper, we proposed two extensions to our previous

QoS-aware job scheduling mechanism, QoPS, to analyze and

minimize the impact of opportunity cost in job scheduling.

Specifically, for each job accepted, the supercomputer center

might relinquish its capability to accept some future arriving

more expensive jobs, i.e., it can viewed as paying an implicit

opportunity cost. In this paper, we used predictive techniques

to identify such opportunity costs and minimize their impact

on the overall system revenue. We analyzed our designs and

evaluated them using simulation on real workloads from the

San Diego Supercomputer Center (SDSC). Our results demon-

strated that we not only achieve several factors improvement in

system revenue, but also good service differentiation as a much

desired side-effect.
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